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Summary

The rms impulse response width of germania
doped fibers having power-law profiles at the
carrier wavelength 1s evaluated with the help
of a numerical method, For An/n =z 0.02, the
numerical result exceeds by more than one
order of magnitude that obtained from an
analytical formula based on the assumptilon

that dnz/dk varles linearly with n2. Our
numerical technique 1s based on scalar ray
optics. It is applicable to any fiber having
a large V-number and a smooth profile,

Multimode fibers having relatively large

A= An/n (e.g., A > 0.01) are attractive
because of thelr high coupling efficiency to
LED sources and because of thelr small
sensitivity to microbending loss. Even if
long-1ife monomode injection lasers prove
feasible, multimode fibers may remain more
attractive than monomode fibers for long-
distance high-capacity transmission because
of easler cabling and splicing. Links using
multimode fibers can easily be upgraded if
long~life laser sources become available.
Monomode fibers, in contradistinction, are
restricted to laser sources.

One key question, however, is whether high
data rates can be transmitted through multi-
mode fibers having large A. One of the best

experimental value reportedl for the rms
impulse response width is ¢=10,000 A2nsec/km,

for A=0.01. On the other hand, Olshansky

and Keck theory2 suggests that the rms
impulse response width does not exceed

150A2nsec/km for a power~law profile.

nz(r)/nz(o) =1 - 28(r/a)K (1)

and a suiltable value of the exponent k. If
this theoretical result were applicable to
real fibers, glgabit/sec rates would be
possible, even for values of A as large as
0.02. One obvious explanation for the much
higher value observed for o is that the
desired power-law profile has not yet been
achieved with sufficient accuracy. We would
like to point out another possible
explanation: Olshansky and Keck's theory

implicitly assumes that dnz/dk varles linearly

with n2 as the dopant concentration varies.
Olshansky and Keck's theory is valid only when
the relative group index N, defined in (6b), is
proportional to the relative phase 1index N,
defined in (6a), for the class of materials
incorporated in the fiber, or equivalently,

when S = —(A/Z)dn2/dx varies linearly with
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n2. It is easy to see that when this

condition 1s not fulflled, power-law profilies
do not remain power-law profiles at
neighboring wavelengths. 1In that case it is
incorrect to calculate the group velocity by
differentiating n(r,A) in (1) with respect to
A. Measurements made recently by

Fleming3 show that dnz/dk 1s not a linear

function of n2 (See Fig. 1). The purpose of
the present paper is to assess the practical
significance of this lack of linearity. This
is done by comparing the analytical results
In Ref. 2 to exact numerical results. This
comparison suggests that the formula given

in Ref. 2 is applicable only to fibers with
very small values of A, typically A < 0.005.

The numerical technique presented in this
paper 1s based on the space-time Hamilton

equations. A1l the information needed to
write a working program is supplied here, but
the detalled derivations are omitted. This
technique gives accurately the rms impulse
response width of dispersive fibers having
large V-numbers (V >> 20) and smooth profiles.
About 1 minute of IBM 370 computer time is
needed to evaluate the rms impulse response
width of a fiber. This is one fifth of the
time required by programs based on wave
optics. For simplicity, we assume that the
source 1s quasi-monochromatic (e.g., an LED
followed by a narrow-band filter). The fiber
response for sources with non-zero spectral
width is easily obtalned by convolving the
quasi-monochromatic response evaluated in this
letter with the source spectrum.

Let us assume that the Sellmeier-law
coefficlents AY’ QY, y =1, 2, 3, of the

materials incorporated in the fiber (e.g.,
germania-doped silica) have been measured at
the source wavelength. The refractive index
n is defined by the Sellmeier law
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Experimental values of n and S are shown in
Fig. 1 for various concentrations of germania
or boron oxide in silica. The measurements
were made on prism-shaped samples with the

minimum deviation method by Flewing.3 Note
that angles of refraction, unlike optical
thickness of thin samples, are insensitive to
alterations of the sample surface, which may
be caused, for example, by oill films or

compacting. Note also that the curve dnz/dx



versus n2 is independent of dopant
concentration measurements. Values are
interpolated for other concentrations.
Whether this interpolation is sufficiently
accurate 1s opened to question. Additional
measurements would be highly desirable.
However, the information presently available
appears to be sufficlent to illustrate our
point. Because quenching may affect slightly

the dependence of dn2/dx on n2, 1t would be
desirable to make the measurements directly
on fiber samples. However,
progress, the measurements on fiber samples
that are presently available are too in-

accurate to provide the desired information

concerning dn2/dk. The profile n(r), however,
1s most accurately measured on fiber samples.

Let us now describe the ray sampling
procedure. We select a normalized azimuthal
mode number M and a normalized propagation
constant B from the sequences

M=1/A, 2/A, (4a)
B = [(I-1)/T12a, [(T-2)/T]24A, (4p)
where 2A = 1-—n§/n§, ng = n(g), and n, ig the

cladding index. Typical values for A and T
in (4) are 50 and 20, respectively. The time
of flight of a pulse along the ray trajectory
specifled by M and B is obtained by solving
with the Euler or Runge-Kutta techniques

the first order equations

1/2P

dr/dz = (1-B)~ (52)
ap/az = (1-B)"Y2(-1/2 an/ar +m2/R3)  (5b)
aT/dz = (NP-2W+B)/[1-B+(1-F) (1-B)/2]  (5¢)
for the three functlons R(Z), P(Z) and T(Z).

We have defined a relative phase index N and
a relative group index N by

N(R) = 1-n®(r)/n’ (6a)
= _ -2 -2
N(R) = [N'*(SO—S)HO ]/(l'*Sono ) (6b)
where n and S are defined in (2) and (3)
respectlively, and
R = r/a; Sy E S(0)

where a denotes an arbitrary length, perhaps
the core radius. (The fiber response is
unaffected by a change of scale in the
radial direction.) The initial values of
R(Z), P(Z), T(Z) are respectively

R(0) = R5 AN(R )/AR_ = 2M°/R3 (72)
P(0) = [B - N(R ) - M7/R21L/2 (7b)
T(0) = 0 (7e)

The derivative dAN/dR in (6b) and (7a) can
be obtained algebraically in N(R) is gilven
as a simple analytical form such as a power-

in spilte of recent

law profile, or by incrementing R. The
integration of (5) terminates after one
period. Usually, 2000 steps per perlod are
sufficlent. The difference between the time
of arrival of a pulse along the ray considered
and the time of arrival of a pulse along the
fiber axis, in nsec/km, is

ray

AT = 5,000 T / (8)

final Zfinal

The series of values of M and B taken in
sequence according to (4) terminates when
P(0) in (7b) ceases to be real. For a
Lambertian source, the rms Ilmpulse response

width o (<A1:2>--<At>2)l/2 is obtained by
averaging At in (8) over all the values of

M and B permitted by the condition set up
above, For non-Lambertian sources or non-
uniform attenuation of the modes, one needs
introduce weighting factors in the evaluation
of the averages.

The numerical technigue just described has
been applied to germanla doped fibers that
have the power-law profile in (1) at the
source wavelength, but not necessarily at
neighboring wavelengths. We have considered
a tiber with 20% germania on axis (A = 0.022).
The cladding is assumed to be made of pure
silica. The rms impulse response width of
the fiber for a Lambertian quasi-monochromatic
source 1s shown in Fig. 2 by plain 1lines for
three wavelengths of interest as a function
of the exponent « in (1). For comparison,
the rms impulse response wldths calculated
from Ref. 2 are shown by interrupted lines.
As one c¢an see, there are large discrepancies
between the result obtained from the theory
in Ref. 2 and the exact result, particularly
when A > 0.9um and A > 0,01, For example,
when A 1.2um and A 0.0216, the simplified
analytical formula in Ref. 2 predicts that
the minimum value of o 1s 0.08 nsec/km when
the exponent k 1s equal to 0.965. For that
value of k, o 1s in fact, equal to 2 nsec/km.
The minimum value of o 1s obtalned for

K 1.05 and 1s equal to 0.6 nsec/km.

The analytical formula presented by this
author in Ref. U can handle arbitrary

variations of dng/dk as a function of n2.
However, 1t 1s restricted to small departures
of the profile from a square-law. For « 1
(square-law medlum) our analytilcal result in
Ref. 4, shown by black dots 1in Figs. 1 and 2,
agrees with the numerical result to better
than three decimal places.

The determination of the optimum profile for

a given class of material can be made, using
our numerical technigue, by successive
approximations. For example, for a fiber with
13.5 mole percent germania on axls (A= 0.014)
and A =1.06um, one finds that the rms impulse
response wildth can be reduced to 52 psec/km by
a proper selection of the coefficients of the
expansion of N in series of R2. This near-
optimum profilie departs very significantly
from a power-law profile. The departure of
the optimum profile from a power-law profile
1s even more pronounced when two dopant
materials are used.
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In conclusion, we have shown that, in order
to evaluate the rms impulse response
width of a fiber with A > 0.005, it is

essential to measure the variation of dng/ﬁk

as a function of n2 at the carrier wave-
length, as well as the profile n(r) of the
fiber, and to use a theory that takes the

actual variation of dnz/dk into account.

The transmission rate capacity of fibers

with A as large as 0.02 appears to be in

the glgablt/sec range, but the index profiles
that one must look for are not, in general,
power-law profilles.
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Fig. 1 Variation of S = -An(dn/dA) as a

funetion of n“~ for various materials
at A 1.06um. The numbers near each
black point are the concentrations of

germania and boron oxide, respectively,

in mole percent. S is measured with
an accuracy better than 1%. The
result in Flg. 2 1is obtained from a
parabolic interpolation between the
values measured for 0, 7 and 13.5%
germania.
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2 Variation of the rms impulse response
widthoas a funetion of the exponent k
of r2 for a germania doped fiber with

power-law profile at the carrier
wavelength (plain lines). The results
from the approximate theory in Ref. 2
are shown as dotted lines. The black
dots are from the analytical result in
Ref. L. The germania concentration is
assumed to be 20 mole percent on axis,
and zero at the cladding.



