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Summary.—

The rms impulse response width of germania

doped fibers having power-law profiles at the

carrier wavelength is evaluated with the help
of a numerical method, For An/n x 0.02, the
numerical result exceeds by more than one
order of magnitude that obtained from an

analytical formula based on the assumption

that dn2/dA varies linearly with n2. Our
numerical technique is based on scalar ray

optics. It is applicable to any fiber having
a large V-number and a smooth profile.

Multimode fibers having relatively large

A z An/n (e.g., A ~ 0,01) are attractive

because of their high coupling efficiency to

LED sources and because of their small

sensitivity to microbending loss. Even if
long-life monomode injection lasers prove
feasible, multimode fibers may remain more
attractive than monomode fibers for long-

distance high-capacity transmission because
of easier cabling and splicing. Links using
multimode fibers can easily be upgraded if
long-life laser sources become available.
Monomode fibers, in contradistinction, are
restricted to laser sources.

One key question, however, is whether high

data rates can be transmitted through multi-
mode fibers having large A. One of the best

experimental value reported
1

for the rms
impulse response

for A=O.01. On
2

and Keck theory
impulse response

150A2nsec/km for

width is u= 10,000 A2nsec/km,

the other hand, Olshansky

suggests that the rms

width does not exceed

a Power-law profile.

nZ(r)/nZ(0) = 1 - 2A(r\a)2K (1)

and a suitable value of the exponent K. If
this theoretical result were applicable to
real fibers, gigabit/see rates would be
possible, even for values of A as large as
0.02. One obvious explanation for the much

higher value observed for o is that the

desired power-law profile has not yet been
achieved with sufficient accuracy. We would
like to point out another possible

explanation: Olshansky and Keck’s theory

implicitly assumes that dn2/dA varies linearly
2

with n as the dopant concentration varies.
Olshansky and Keck’s theory is valid only when

the relative group index N, defined in (6b), is
proportional to the relative phase index N,

defined in (6a), for the class of materials

incorporated in the fiber, or equivalently,

when S E -(A/2)dn2/dA varies linearly with

n2. It is easy to see that when this
condition is not fulfiled, power–law profiles

do not remain power-law profiles at
neighboring wavelengths. In that case it is
incorrect to calculate the group velocity by

differentiating n(r,A) in (1) with respect to
h. Measurements made recently by

Fleming3 show that dn2/dl is not a linear

function of n2 (See Fig. 1). The purpose of
the present paper is to assess the practical

significance of this lack of linearity. This
is done by comparing the analytical results

in Ref. 2 to exact numerical results. This

comparison suggests that the formula given
in Ref. 2 is applicable only to fibers with
very small values of A, typically d ~ ().005.

The numerical technique presented in this
paper is based on the space-time Hamilton

4
equations . All the information needed to

write a working program is supplied here, but

the detailed derivations are omitted. This
technique gives accurately the rms impulse
response width of dispersive fibers having
large V-numbers (V >> 20) and smooth profiles.

About 1 minute of IBM 370 computer time is
needed to evaluate the rms impulse response

width of a fiber, This is one fifth of the
time required by programs based on wave

optics. For simplicity, we assume that the
source is quasi-monochromatic (e.g., an LED

followed by a narrow-band filter). The fiber
response for sources with non-zero spectral
width is easily obtained by convolving the
quasi-monochromatic response evaluated in this
letter with the source spectrum.

Let us assume that the Sellmeier-law
coefficients A g

Y’ Y’
Y = 1, 2, 3, of the

materials incorporated in the fiber (e.g.,
germania-doped silica) have been measured at
the source wavelength. The refractive index
n is defined by the Sellmeier law

n2- 31 = I AY(l-ITY)-l; ‘Y
= (@/a)2 (2)

y.1

We obtain by differentiation with respect to k

-2
S : -(A/2)dn2/dk = ~ Ayny(l-Ty) (3)

Y=l

Experimental values of n and S are shown in
Fig . 1 for various concentrations of germania
or boron oxide in silica. The measurements
were made on prism-shaped samples with the

minimum deviation method by Fleming.
3 Note

that angles of refraction, unlike optical
thickness of thin samples, are insensitive to
alterations of the sample surface, which may
be caused, for example, by oil films or

compacting. Note also that the curve dn2/dA
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2
versus n is independent of dopant

concentration measurements. Values are
interpolated for other concentrations.
whether this interpolation is sufficiently
accurate is opened to question. Additional
measurements would be highly desirable.
However, the information presently available
appears to be sufficient to illustrate our
point. Because quenching may affect slightly

the dependence of dn2/dl on n2, it would be
desirable to make the measurements directly
on fiber samples. However, in spite of recent
progress, the measurements on fiber samples
that are presently available are too in-
accurate to provide the desired information

concerning dn2/dA. The profile n(r), however,
is most accurately measured on fiber samples.

Let us now describe the ray sampling
procedure. We select a normalized azimuthal
mode numbep M and a normalized propagation
constant B from the sequences

M = l/A, 2/A, . . . (4a)

B = [(1-1)/I12A, [(1-2)/I12A, . . . (4b)

where 2A z l-n~/n~, no : n(0), and nc is the

cladding index. Typical values for A and I
in (4) are 50 and 20, respectively. The time
of flight of a pulse along the ray trajectory
specified by M and B is obtained by solving
with the Euler or Runge-Kutta techniques
the first order equations

dR/dZ = (1-B)-1’2P (5a)

dP/dZ = (l-B) ‘1’2(-1/2 dN/dR+M2/’R3) (5b)

dT\dZ = (fi2-2~+B)/’[l-B+(l-~)(l-B)1’2 ] (5C)

for the three functions R(Z), P(Z) and T(Z).
We have defined a relat~ve phase index N and
a relative group index N by

N(R) = l-n2(r)/n~ (6a)

R(R) ~ [N+ (So-S)n~2]/(l+Son~2) (6b)

where n and S are defined in (2) and (3)
respectively, and

R : r/a; so E s(o)

where a denotes an arbitrary length, perhaps
the core radius. (The fiber response is
unaffected by a change of scale in the
radial direction. ) The initial values of
R(Z), P(Z), T(Z)

R(0) = Ro; dN

P(0) = [B – N

T(0) = O

are respectively

Ro)/dRo = 2M2/R: (7a)

Ro) – M2/R~]l’2 (7b)

(7C)

The derivative dN/dR in (6b) and (7a) can
be obtained algebraically in N(R) is given
as a simple analytical form such as a power-

law profile, or by incrementing R. The
integration of (5) terminates after one ray
period. Usually, 2000 steps per period are
sufficient . The difference between the time
of arrival of a pulse along the ray considered
and the time of arrival of a pulse along the
fiber axis, in nsec/km, is

AT = 5,000 T
final’’zfinal

(8)

The series of values of M and B taken in
sequence according to (4) terminates when
P(0) in (7b) ceases to be real. For a
Lambertian source, the rms impulse response

2 1/2
width o = (<At*> -<At> ) is obtained by
averaging At in (8) over all the values of
M and B permitted by the condition set up
above. For non-Lambertian sources or non-
uniform attenuation of the modes, one needs
introduce weighting factors In the evaluation
of the averages.

The numerical technique just described has
been applfed to germania doped fibers that
have the Dower-1aw profile in (1) at the
source wavelength, but not necessarily at
neighboring wavelengths. We have considered
a fiber with 20% ~ermania on axis (A x 0.022).
The cladding is a~sumed to be made”of pure
silica. The rms impulse response width of
the fiber for a Lambertian quasi-monochromatic
source is shown in Fig. 2 by plain lines for
three wavelengths of interest as a function
of the eXpOnent K in (1). For comparison,
the rms impulse response widths calculated
from Ref. 2 are shown by interrupted lines.
As one can see, there are large discrepancies
between the result obtained from the theory
in Ref. 2 and the exact result, particularly
when A > 0.9~m and A > 0.01. For example,
when 1 = 1.2pm and A = 0.0216, the simplified
analytical formula in Ref. 2 predicts that
the minimum value of o is 0.08 nsec/km when
the exponent K is equal to 0.965. For that
value of K, 5 is in fact, equal to 2 nsec/km.
The minimum value of o is obtained for
K = 1.05 and is equal to 0.6 nsec/km.

The analytical formula presented by this
author in Ref. 4 can handle arbftrary

2
variations of dn2/dA as a function of n .
However, it is restricted to small departures
of the profile from a square-law. For K = 1
(square-law medium) our analytical result in
Ref. 4, shown by black dots in Figs. 1 and 2,
agrees with the numerical result to better
than three decimal places.

The determination of the optimum profile for
a given class of material can be made, using
our numerical technique, by successive
approximations. For example, for a fiber with
13.5 mole percent germania on axis (A= 0.014)
and 1= 1.06~m, one finds that the rms impulse
response width can be reduced to 52 psec/km by
a ProPer SeleCtiOn of the coeffic~.ents of the
expansion of N in series of R2. This near-
optimum profile departs very significantly
from a power-law profile. The departure of
the optimum profile from a power-law profile
is even more pronounced when two dopant
materials are used.
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In conclusion, we have shown that, in ortier
to evaluate the rms impulse response
width of a fiber with A ~ 0.005, it is

essential to measure the variation of dn2Al

as a function of n
2

at the car~ier wave-
length, as well as the profile n(r) of the
fiber, and to use a theory that takes the

actual variation of dn2/dA into account.
The transmission rate capacity of fibers
with A as large as 0.02 appears to be in
the gigabit/see range, but the index profiles
that one must look for are not, in general,

power-law profiles.
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Fig. 1 Variation of S : –An(dn/dA) as a

function of n2 for various materials
at A = 1.06~m. The numbers near each
black point are the concentrations of
germania and boron oxide, respectively,
in mole percent. S is measured with
an accuracy better than l%. The
result in Fig. 2 is obtained from a
parabolic interpolation between the

values measured for O, 7 and 13.5%
germania.
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Fig . 2 Variation of the rms impulse response
widthcras a fUnCt.iOII of the exponent K

of P 2 for a germania doped fiber with
power-law profile at the carrier
wavelength (plain lines). The results
from the approximate theory in Ref. 2
are shown as dotted lines. The black
dots ire from the analytical result in
Ref. . The germania concentration is

assumed to be 20 mole percent on axis,
and zero at the cladding.
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